Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros








Intervalo de año
1.
Biol. Res ; 53: 41, 2020. graf
Artículo en Inglés | LILACS | ID: biblio-1131885

RESUMEN

BACKGROUND: Tumor angiogenesis is an essential event for tumor growth and metastasis. It has been showed that REC8, a component of the meiotic cohesion complex, played a vital role in Epithelial-Mesenchymal Transition (EMT) in gastric cancer. However, the role of REC8 in gastric cancer angiogenesis remains to be identified. RESULTS: Inhibition of REC8 expression in gastric cancer cells contributed to tumor angiogenesis in the gastric cancer microenvironment. The clinical analysis demonstrated that the loss of REC8 in gastric cancer with enrichment of MVD. Depletion of REC8 expression in gastric cancer cells significantly increased tube formation of human umbilical vein endothelial cells (HUVECs), which is attributed to enhancement of vascular endothelial growth factor (VEGF) secretion caused by REC8 slicing. While addition of neutralizing antibody targeted VEGF into supernatant drastically reversed the effect of REC8 loss in gastric cancer cells on tube formation. Mechanistic analyses indicated that ablation of REC8 promotes nuclear factor-κB (NF-κB) p65 activity and its downstream gene VEGF expression, leading to tube formation. CONCLUSIONS: These results demonstrated a novel REC8 function that suppressed tumor angiogenesis and progression by attenuation of VEGF in gastric cancer microenvironment.


Asunto(s)
Humanos , Neoplasias Gástricas/patología , FN-kappa B/genética , Proteínas de Ciclo Celular/genética , Factor A de Crecimiento Endotelial Vascular/genética , Neovascularización Patológica/genética , Neoplasias Gástricas/irrigación sanguínea , Línea Celular Tumoral , Microambiente Tumoral , Células Endoteliales de la Vena Umbilical Humana
2.
Biol. Res ; 53: 12, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1100918

RESUMEN

BACKGROUND: Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. RESULTS: In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (lECs) to investigate the communication between MCs and lECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into lECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. CONCLUSIONS: These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.


Asunto(s)
Humanos , Animales , Bovinos , MicroARNs/metabolismo , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Mastocitos/metabolismo , Permeabilidad , Enfermedades Inflamatorias del Intestino/metabolismo , Células Cultivadas , Células CACO-2/citología , Biología Computacional , Análisis de Matrices Tisulares , Exosomas/metabolismo , Claudinas/metabolismo , Ocludina/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA